000 01831cam a22003135i 4500
003 EG-CaNGU
005 20250326124831.0
008 250326t2018 mau fo m eng d
020 _a9780262039246
040 _aDLC
_beng
_cDLC
_erda
_dDLC
_dEG-CaNGU
100 1 _aSutton, Richard S.,
_eauthor.
_96575
245 1 0 _aReinforcement learning :
_ban introduction /
250 _aSecond edition.
264 1 _aCambridge, Massachusetts :
_bThe MIT Press,
_c[2018]
264 4 _c©2018
300 _a1 online resource (xxii, 526 pages) :
_billustrations.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 0 _aAdaptive computation and machine learning series
504 _aIncludes bibliographical references and index.
505 0 0 _aPreface to the Second Edition -- Preface to the First Edition -- Summary of Notation -- 1. Introduction -- I. Tabular Solution Methods -- II. Approximate Solution Methods -- III. Looking Deeper.
506 _aAvailable on-campus and off-campus.
520 _a"Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms."--
_cProvided by publisher.
650 7 _aReinforcement learning.
_2NGU-sh
_96576
655 7 _aElectronic books.
_2NGU-sh
_91203
700 1 _aBarto, Andrew G.,
_eauthor.
_96577
856 4 0 _aOnline resource.
_uhttps://mitpress.ublish.com/ebook/reinforcement-learning-an-introduction-2-preview/2351/Cover
_zOnline resource.
999 _c2179
_d2179