000 | 01831cam a22003135i 4500 | ||
---|---|---|---|
003 | EG-CaNGU | ||
005 | 20250326124831.0 | ||
008 | 250326t2018 mau fo m eng d | ||
020 | _a9780262039246 | ||
040 |
_aDLC _beng _cDLC _erda _dDLC _dEG-CaNGU |
||
100 | 1 |
_aSutton, Richard S., _eauthor. _96575 |
|
245 | 1 | 0 |
_aReinforcement learning : _ban introduction / |
250 | _aSecond edition. | ||
264 | 1 |
_aCambridge, Massachusetts : _bThe MIT Press, _c[2018] |
|
264 | 4 | _c©2018 | |
300 |
_a1 online resource (xxii, 526 pages) : _billustrations. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 0 | _aAdaptive computation and machine learning series | |
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | 0 | _aPreface to the Second Edition -- Preface to the First Edition -- Summary of Notation -- 1. Introduction -- I. Tabular Solution Methods -- II. Approximate Solution Methods -- III. Looking Deeper. |
506 | _aAvailable on-campus and off-campus. | ||
520 |
_a"Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms."-- _cProvided by publisher. |
||
650 | 7 |
_aReinforcement learning. _2NGU-sh _96576 |
|
655 | 7 |
_aElectronic books. _2NGU-sh _91203 |
|
700 | 1 |
_aBarto, Andrew G., _eauthor. _96577 |
|
856 | 4 | 0 |
_aOnline resource. _uhttps://mitpress.ublish.com/ebook/reinforcement-learning-an-introduction-2-preview/2351/Cover _zOnline resource. |
999 |
_c2179 _d2179 |