000 | 01979cam a22003015i 4500 | ||
---|---|---|---|
003 | EG-CaNGU | ||
005 | 20240131134626.0 | ||
008 | 231218t2017 ne a frb 001 0 eng d | ||
020 | _a9780128042915 | ||
040 |
_aDLC _beng _erda _cDLC _dEG-CaNGU |
||
082 | 0 | 4 |
_a006.312 _bWID _223 |
100 | 1 |
_aWitten, I. H., _q(Ian H.), _eauthor. _96030 |
|
245 | 1 | 0 |
_aData mining : _bpractical machine learning tools and techniques / |
250 | _aFourth Edition. | ||
264 | 1 |
_aAmsterdam, Netherlands : _bMorgan Kaufmann Publishers, Elsevier, _c[2017] |
|
264 | 4 | _c©2017 | |
300 |
_axxxii, 621 pages : _billustrations ; _c24 cm |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_aunmediated _bn _2rdamedia |
||
338 |
_avolume _bnc _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | 0 | _aPart I: Introduction to data mining -- Chapter 1. What’s it all about? -- Chapter 2. Input: Concepts, instances, attributes -- Chapter 3. Output: Knowledge representation -- Chapter 4. Algorithms: The basic methods -- Chapter 5. Credibility: Evaluating what’s been learned -- Part II. More advanced machine learning schemes -- Chapter 6. Trees and rules -- Chapter 7. Extending instance-based and linear models -- Chapter 8. Data transformations -- Chapter 9. Probabilistic methods -- Chapter 10. Deep learning -- Chapter 11. Beyond supervised and unsupervised learning -- Chapter 12. Ensemble learning -- Chapter 13. Moving on: applications and beyond -- References -- Index. |
650 | 7 |
_aData mining. _2NGU-sh _93604 |
|
700 | 1 |
_aFrank, Eibe, _eauthor. _96031 |
|
700 | 1 |
_aHall, Mark A., _q(Mark Andrew), _eauthor. _96032 |
|
700 | 1 |
_aPal, Christopher J., _eauthor. _96033 |
|
999 |
_c1985 _d1985 |