000 01979cam a22003015i 4500
003 EG-CaNGU
005 20240131134626.0
008 231218t2017 ne a frb 001 0 eng d
020 _a9780128042915
040 _aDLC
_beng
_erda
_cDLC
_dEG-CaNGU
082 0 4 _a006.312
_bWID
_223
100 1 _aWitten, I. H.,
_q(Ian H.),
_eauthor.
_96030
245 1 0 _aData mining :
_bpractical machine learning tools and techniques /
250 _aFourth Edition.
264 1 _aAmsterdam, Netherlands :
_bMorgan Kaufmann Publishers, Elsevier,
_c[2017]
264 4 _c©2017
300 _axxxii, 621 pages :
_billustrations ;
_c24 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 0 _aPart I: Introduction to data mining -- Chapter 1. What’s it all about? -- Chapter 2. Input: Concepts, instances, attributes -- Chapter 3. Output: Knowledge representation -- Chapter 4. Algorithms: The basic methods -- Chapter 5. Credibility: Evaluating what’s been learned -- Part II. More advanced machine learning schemes -- Chapter 6. Trees and rules -- Chapter 7. Extending instance-based and linear models -- Chapter 8. Data transformations -- Chapter 9. Probabilistic methods -- Chapter 10. Deep learning -- Chapter 11. Beyond supervised and unsupervised learning -- Chapter 12. Ensemble learning -- Chapter 13. Moving on: applications and beyond -- References -- Index.
650 7 _aData mining.
_2NGU-sh
_93604
700 1 _aFrank, Eibe,
_eauthor.
_96031
700 1 _aHall, Mark A.,
_q(Mark Andrew),
_eauthor.
_96032
700 1 _aPal, Christopher J.,
_eauthor.
_96033
999 _c1985
_d1985