000 | 02137cam a22003255i 4500 | ||
---|---|---|---|
003 | EG-CaNGU | ||
005 | 20240131131641.0 | ||
008 | 231122t20232022enka frb 001 0 eng d | ||
020 |
_a9780262046824 _qAn introduction (hardcover) |
||
020 |
_a9780262048439 _qAdvanced topics (hardcover) |
||
040 |
_aDLC _beng _erda _cDLC _dOCLCO _dOCLCF _dUKMGB _dWAU _dYDX _dOCLCO _dEG-CaNGU |
||
082 | 0 | 4 |
_a006.31 _bMUP _223 |
100 | 1 |
_aMurphy, Kevin P., _d1970-, _eauthor. _95931 |
|
245 | 1 | 0 | _aProbabilistic machine learning / |
264 | 1 |
_aCambridge, England : _bThe MIT Press, _c[2022 - 2023] |
|
264 | 4 | _c©2022 - 2023 | |
300 |
_a2 volumes (various paging) : _billustrations ; _c24 cm. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_aunmediated _bn _2rdamedia |
||
338 |
_avolume _bnc _2rdacarrier |
||
490 | 0 | _aAdaptive computation and machine learning series | |
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | 0 | _aAn Introduction: I Introduction -- II Linear Models -- III Deep Neural Networks -- IV Nonparametric Models -- V Beyond Supervised Learning. |
505 | 0 | 0 | _aAdvanced Topics: I Introduction -- II Inference -- III Prediction -- IV Generation -- V Discovery -- VI Action. |
520 |
_a"This book provides a detailed and up-to-date coverage of machine learning. It is unique in that it unifies approaches based on deep learning with approaches based on probabilistic modeling and inference. It provides mathematical background (e.g. linear algebra, optimization), basic topics (e.g., linear and logistic regression, deep neural networks), as well as more advanced topics (e.g., Gaussian processes). It provides a perfect introduction for people who want to understand cutting edge work in top machine learning conferences such as NeurIPS, ICML and ICLR"-- _cProvided by publisher. |
||
650 | 7 |
_aMachine learning. _2NGU-sh _93897 |
|
650 | 7 |
_aProbabilities. _2NGU-sh _93770 |
|
999 |
_c1971 _d1971 |