000 02137cam a22003255i 4500
003 EG-CaNGU
005 20240131131641.0
008 231122t20232022enka frb 001 0 eng d
020 _a9780262046824
_qAn introduction (hardcover)
020 _a9780262048439
_qAdvanced topics (hardcover)
040 _aDLC
_beng
_erda
_cDLC
_dOCLCO
_dOCLCF
_dUKMGB
_dWAU
_dYDX
_dOCLCO
_dEG-CaNGU
082 0 4 _a006.31
_bMUP
_223
100 1 _aMurphy, Kevin P.,
_d1970-,
_eauthor.
_95931
245 1 0 _aProbabilistic machine learning /
264 1 _aCambridge, England :
_bThe MIT Press,
_c[2022 - 2023]
264 4 _c©2022 - 2023
300 _a2 volumes (various paging) :
_billustrations ;
_c24 cm.
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
490 0 _aAdaptive computation and machine learning series
504 _aIncludes bibliographical references and index.
505 0 0 _aAn Introduction: I Introduction -- II Linear Models -- III Deep Neural Networks -- IV Nonparametric Models -- V Beyond Supervised Learning.
505 0 0 _aAdvanced Topics: I Introduction -- II Inference -- III Prediction -- IV Generation -- V Discovery -- VI Action.
520 _a"This book provides a detailed and up-to-date coverage of machine learning. It is unique in that it unifies approaches based on deep learning with approaches based on probabilistic modeling and inference. It provides mathematical background (e.g. linear algebra, optimization), basic topics (e.g., linear and logistic regression, deep neural networks), as well as more advanced topics (e.g., Gaussian processes). It provides a perfect introduction for people who want to understand cutting edge work in top machine learning conferences such as NeurIPS, ICML and ICLR"--
_cProvided by publisher.
650 7 _aMachine learning.
_2NGU-sh
_93897
650 7 _aProbabilities.
_2NGU-sh
_93770
999 _c1971
_d1971