000 02100cam a22003615i 4500
003 EG-CaNGU
005 20241009125007.0
008 230829s2009 ny a fob 001 0 eng d
020 _a9780387848587
_q(online resource)
040 _aDLC
_cDLC
_dDLC
_dEG-CaNGU
_beng
_erda
100 1 _aHastie, Trevor,
_eauthor.
_95542
245 1 4 _aThe elements of statistical learning :
_bdata mining, inference, and prediction /
250 _aSecond edition.
264 1 _aNew York :
_bSpringer Science+Business Media, LLC., Springer Nature,
_c[2009]
264 4 _c©2009
300 _a1 online resource (xxii, 745 pages) :
_billustrations.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 0 _aSpringer series in statistics,
_x2197-568X
504 _aIncludes bibliographical references and indexes.
505 0 0 _aIntroduction -- Overview of Supervised Learning -- Linear Methods for Regression -- Linear Methods for Classification -- Basis Expansions and Regularization -- Kernel Smoothing Methods -- Model Assessment and Selection -- Model Inference and Averaging -- Additive Models, Trees, and Related Methods -- Boosting and Additive Trees -- Neural Networks -- Support Vector Machines and Flexible Discriminants --Prototype Methods and Nearest-Neighbors -- Prototype Methods and Nearest-Neighbors -- Random Forests -- Random Forests -- Random Forests -- High-Dimensional Problems: p N -- References -- Index.
506 _aAvailable on-campus and off-campus.
650 7 _aMachine learning.
_2NGU-sh
_93897
650 7 _aStatistics
_xmethodology.
_2NGU-sh
_95543
650 7 _aData mining.
_2NGU-sh
_93604
650 7 _aBioinformatics.
_2NGU-sh
_971
650 7 _aComputational intelligence.
_2NGU-sh
_95544
655 7 _aElectronic books
_2NGU-sh
_91203
700 1 _aTibshirani, Robert,
_eauthor.
_95545
700 1 _aFriedman, J. H.,
_q(Jerome H.),
_eauthor.
_95546
856 4 0 _aOnline resource.
_uhttps://link.springer.com/book/10.1007/978-0-387-84858-7
_zOnline resource.
999 _c1931
_d1931