TY - BOOK AU - Witten,I.H. AU - Frank,Eibe AU - Hall,Mark A. AU - Pal,Christopher J. TI - Data mining: practical machine learning tools and techniques SN - 9780128042915 U1 - 006.312 23 PY - 2017///] CY - Amsterdam, Netherlands PB - Morgan Kaufmann Publishers, Elsevier KW - Data mining KW - NGU-sh N1 - Includes bibliographical references and index; Part I: Introduction to data mining -- Chapter 1. What’s it all about? -- Chapter 2. Input: Concepts, instances, attributes -- Chapter 3. Output: Knowledge representation -- Chapter 4. Algorithms: The basic methods -- Chapter 5. Credibility: Evaluating what’s been learned -- Part II. More advanced machine learning schemes -- Chapter 6. Trees and rules -- Chapter 7. Extending instance-based and linear models -- Chapter 8. Data transformations -- Chapter 9. Probabilistic methods -- Chapter 10. Deep learning -- Chapter 11. Beyond supervised and unsupervised learning -- Chapter 12. Ensemble learning -- Chapter 13. Moving on: applications and beyond -- References -- Index ER -